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I
INVARIANTS AND STRUCTURED SINGULAR VALUES

Introduction

The theme of the ONR-sponsored research program at Honeywell for the last eight years was
the mathematical theory of robust control. The theoretical novelty that fueled the technical
effort was the structured singular value (SSV). The result was a new theory of robust control
based on the structured singular value. Control analysis and design tools based on this theory3 have gained widespread industry acceptance.

Quoting Gary Balas of MUSYN:

To gauge the control community's interest in these topics, a short course offered
in September 1989 by MUSYN Inc. titled, "Theory and Applications of Robust
Multivariable Control," was attended by over 45 people from industry, academia
and government laboratories. The course was offered again in March, 1990 at
NASA Langley Research Center to 25 NASA and Air Force engineers. These
researchers are interested in applying these techniques to topics such as: flight
control, flutter suppression and vibration attenuation of flexible structures. In the
summer of 1990 the course will be offered in Cambridge, England Delph, Neth-
erlands and Pasadena, California. It is believed that over 200 people will attend
the robust multivariable short course in 1990.

Currently, I. control design techniques and t-analysis and synthesis methods are
being used to design flight control systems, vibration attenuation control laws for
flexible structures, and missile autopilots. Johns Hopkins University Applied Phy-I sics Laboratory (JHUAPL), China Lake Naval Weapons Center and Dahlgren
Naval Weapons Center are applying such methods to design of robust control
laws for missile autopilots. JHUAPL, in addition, is investigating the application
of the the p-synthesis methodology to the design of gain-scheduled autopilots and
guidance and navigation algorithms.

In our experience at Honeywell's Systems and Research Center over the last five years, we
have seen these methods applied to numerous aerospace control system analysis and design
problems: involving the F-15 STOL DEMO vehicle, Space Shuttle, and NASP to name just a
few. In current control design applications the SSV is the key ingredient that insures needed
multivariable robustness properties of the feedback control laws.

The Structured Singular Value concept was in its infancy when this ONR-sponsored program
began more than eight years ago. The rapid growth of the concept during those early years led
to the ONR/Honeywell Workshop, a three day event in October of 1984. Featured speakers at
that Workshop were (among others) Gunter Stein, John Doyle, Bruce Francis. The notes from
the presentations of these three speakers constituted the official set of Workshop Notes. Those
Notes constituted Volume 1 of this final report.

It is satisfying to see a theoretical concept grow and find practical applications as successfully
as the SSV concept has over the last 8 years. This ONR sponsored program has provided
valuable support for the basic mathematical research effort. The successful collaboration we
have had between top-notch mathematics and control experts in academics and industry is not3 easy to keep alive without some source of government research funds.

When it came time to write the final report, there were several possibilities that came to mind
concerning what to write about. Ideas about documenting the history of the SSV development,
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a serious study of robust, practical control law design, a (finally) comprehensible development
of the SSV theory with a survey and comparison of accumulated results, etc.

After several unsuccessful attempts to write on several of those sensible and useful topics, it
became clear that the final report was going to be -- more mathematical theory (this is a
research contract, after all).

Technical Report Summary

The underlying mathematical t-theory was and still remains an evolving bundle of concepts
and techniques, often discussed and written about by the investigators, never completely for-
malized. This report is primarily devoted to a presentation of a relatively small piece of the
overall SSV theory and the simplest part at that: the diagonal, unrepeated complex block
problem. One would have thought that after eight years of research the simplest part of the
theory would have been worked out to everyone's satisfaction. In fact, fer the most simple,
nontrivial g-problem (2x2 diagonal unrepeated blocks) it has.

After the notation in section 1 of the report, we present to everyone's satisfaction (or, at least
the author's satisfaction) the 2x2 diagonal-block t-theory. If all we wanted was a statement
and proof of the result we could have made that section much shorter. The greater effort put
into that simple problem was part of a (not very well concealed) plan to bring invariant theory
into the picture.

To see the invariants, and the role they play in the problem, the theory must be polished to a
very fine resolution. Every parameter of the problem must be accounted for. After going
through the theory in this new way we started to see things a little differently. That was the
plan, because our secret goal was to solve, at last, the four-block diagonal gI-problem by a
method that could be implemented efficiently on a computer. That simple problem was the
first t-problem on the hit-list after Doyle proved his remarkable theorem for the three-block
case in 1982. The author tried his hand at it and failed. It remained unsolved throughout the
duration of this contract. Clearly, we were missing something, so a fresh approach looked like
a good idea.

3 We solved the four-block diagonal t-problem. We did it while trying to use invariant theory.
We developed a reasonable algorithm, implemented and tested it on a computer, and it
seemed to work (with no other way to find the exact answer, how do we know if it works? --
it did agree with Packard's lower bound to within a couple of percent). Plots of the results are
shown at the end of Section 3. Then we started to write the details of the proofs. The theory
started to change (but, remarkably, the algorithm did not). The theory below (still in flux) is
the current version.

Many of the results presented here were known earlier, but there are several ideas that seem
original. A partial list of highlights is:

1) Theorem 3.1 (with Last Minute Remarks at the end of section 4):

This theorem is a canonical form description of the diagonal, non-repeated blockIt-problem. Though not made truly canonical until the report was almost finished,
in its incomplete form it laid a foundation for the geometric analysis. In its com-
plete form it allows immediate classification of the 3-block g-problem within a
space depending (generically) on 8 real parameters (the four-block mu problem
appears to depend on 23 real parameters).

2) Theorem 3.3

3 2
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I This theorem led to the development of the computational algorithm that can now
be used to compute pt(M) exactly for the 4-diagonal block problem. It provides a
set of polynomial equations, equations that are very easy to understand and work
with (if not always easy to solve), and shows how the solutions to that set of
equation give solutions to the gI-problem.

I 3) Constructive algorithm 3.1

There is a general result from classical elimination theory stating that a system of
n+1 homogeneous polynomial equations in n unknowns can be solved -- that
method can (in principle) be used to solve the t-problem given the result of
Theorem 3.3. The constructive algorithm we use though not formalized yet, is a
form of elimination specially tailored for the polynomial system at hand. There
might be better methods available, but this one was readily understood, easy to
code, numerically robust, etc.

I 4) Loose End 4.1

This rambling discussion describes the very recent efforts toward applying invari-
ant theory to improve our understanding of structured singular values, with an eye
toward efficient computational methods. In the absence of any new or practically
useful results to show for our efforts so far, we have focused attention on explain-
ing why we approached the problem from this viewpoint and what we can realist-
ically hope to achieve. The final observation made at the deadline, Observation
4.4, explains how we intend to proceed.

U The treatment here is far from a comprehensive study of structured singular values. For those
who want a broader reference, the best we know is the 1988 AFOSR Report "Robust Control
of Multivariable and Large Scale Systems," by Andy Packard and John Doyle.

The parameter spaces used here are the same as those used in past studies. The new idea in
this report is to look at the problem from a global perspective, to find all the points that look
like they could be pt(M), and determine how to pick the ight one. Previous studies quickly
eliminated all of the bogus li-like points, but they were forced to work locally to do so (to the
credit of their inventors, the local techniques have led to some good global results).

I The characteriztion of the set S ing in Theorem 3.2 and the correspondence between those
points and the real points on a singular complex variety given in Theorem 3.3 turns out to be
natural (at least the author still thinks so). The problem with this global perspective is the
large number of complex points on that variety that eat up computer time when one has to use
in order to carry them along. For the three and four block problems the dimensions work out
so that the global evaluation is feasible, but already for dimension 5 we are not sure if this

* approach is still practical.

The final section on loose ends discusses and sometimes improves upon the shortcomings of
results in earlier sections. A major part of that section is devoted to an informal discussion of
what we are trying to do with invariants. There is no telling when we will succeed in solving
the problems stated in that section, but the success we have had implementing code to solve
these problems confirms that these problems are solvable.

In short, we solved the problem we set out to solve but probably not much more. In the pro-
cess we have come to a better understanding of the complexity of the t-problem, and we have
some less than certain approaches to extending the computable results out to 6 or 8 blocks or

I 3



I so. The picture revealed in going through the theory is fascinating, with inevitable ties to alge-
braic geometry and classical invariant theory. We hope the reader will find something of
interest in the presentation.

Programmatic Overview

This program was people working on theory, talking to each other, and writing papers for
publication.

This report was written by the Honeywell Principal Investigator, but the ideas presented (at
least the good ones) are primarily the results of consultants who worked on the program and
of colleagues at Honeywell Systems and Research Center. Names of those whose efforts con-
tributed directly this program are:

I Consultants, Visitors, ...

1) John Doyle - Star of the team, SSV Inventor
i 2) Andy Packard

3) Alien Tannenbaum
4) Pramod Khargonekar
5) Mike Safonov
6) Jim Freudenberg
7) Bruce Francis

Honeywell Personnel and Expatriots

1) Gunter Stein
2) Gary Hartmann
3) Mike Barrett
4) Dale Enns
5) Jim Krause
6) Kathryn Lenz
7) Chester Chu
8) Mike Elgersma
9) Dan Bugajski
10) Joe Wall
11) Art Harvey
12) Blaise Morton - Honeywell PI

Apologies to those who played a role and are not listed here. It is hard to remember all the
contributors to an eight-year old program. It is also difficult to keep track of who gets credit
for everything. You guys know what you did.

References

During the course of the program there were many publications partially funded by this con-
tract, or for which there may have been overlap of activities (e.g. AFOSR). No complete list
of these papers has been maintained, on the next page is a partial list.
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* 1. Notation

Let M be a complex n x n matrix and denote by A the set of block diagonal matrices:

A, 0 0 0
I A 0 A0 0- 0 (1)

0 A20 0

LO000 Ad

where each A, is a complex mj x mj matrix , m, + • - • + mk = n. In this structure one or
more blocks on the diagonal may be repeated -- an important special case is the set of scalar
matrices, denoted 8 Id n, that commutes with all n x n matrices.

In this note the scalar matrices are the only structure considered with repeated blocks. This
restriction to the non-repeated case allows a simplification of notation: when we want to indi-
cate a specific structure we affix the values m1 , - - ,mk as superscripts to A (e.g. A1'1U' is
the set of diagonal 4 x 4 matrices). When the specific structure is not important we simply
use the symbol A and place the burden on the reader to remember that a set of positive
integers mj summing to n is tacitly assumed.

Associated with A is the set UA of block-diagonal unitary (i.e. U*U = Id) matrices that are
contained in A. For example, when A is the set of diagonal matrices we have:

Aj = e (2)

where 0j is a real number.

We are interested in solving the following maximization problem: find

I max( P(XM) IXeUa) (3)

where P is the spectral radius function. The solution to this maximization problem was
shown by Doyle to be the structured singular value of M, denoted gi(M), for the structure A.

There are two special structures for which t can be identified with standard, important func-
tions. The spectral radius of M is the function t(M) associated with the structure 8 Idn, and
the maximum singular value of M is the function gi(M) associated with the structure An. These
two special cases of the function gt are extreme in that jt(M) for any other structure lies
between those two values.

Another special case arises when A is the set of diagonal n x n matrices: then k = n and each
mj is 1. It is this special case we will discuss below.
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U 2. The Simplest Non-Trivial Example

We will consider the general (but unrepeated-block) structure in a later section. The anxious
reader can skip this section, but it is probably easier to read this section first. Here we see
how the general approach works in the simplest non-trivial example: pt(M) associated with the

structure A1'1.

I Let v denote a general complex 2-vector (v E C2)

v = . (4)

I The set UA consists of 2x2 matrices X of the form:

'x= i (5)

I For each X in UA let us examine the eigenvalue problem for the product matrix XM. If the
complex scalar X is an eigenvalue of XM there must be a nonzero v such that equation 6
holds:

XM v = ,v. (6)

U To solve the maximization problem in equation 3 we need to determine the largest IMi that
can arise for any X in UA and nonzero v satisfying equation 6.

In the past, two types of approach have been applied to this problem:

Approach 1: Start at X = Id 2 and solve the eigenvalue problem for XM = M. Next, for j =
1,2, consider X. obtained by incrementing 0. by a small step-size d0i.Solve the eigenvalue
problems for KM, compute max 1xi in both cases, and increment 01, 02 by taking a small
step in the direction of greatest first-order increase in I i. Iterate until a maximum is found.

I Approach 2: Using the parametric representation of Ua given in equation 5, form the product
matrix XM symbolically as a function of 01, 02 and the entries of M. Write down the analytic
expression for the two eigenvalues of XM as functions of these same variables. Differentiate
with respect to 01, 02 the expressions for the magnitudes of the two eigenvalues at each point
and set these partial derivatives equal to zero to obtain a set of equations to be solved for
01, 02 in order to determine the ci-tical values of IXI. Solve all these equations for 01, 02 and
substitute the solutions back into the eigenvalue formulas. The largest lI arising from the
finite set of points considered should be the desired maximum.

These two approaches can be used but neither one provides a satisfactory solution to the gen-
eral problem. The problem with the first approach is the possibility of local maxima less than
the true maximum. Examples have been constructed where multiple local maxima do exist.
Consequently, gradient search techniques do not have guaranteed convergence properties.

The second approach has the problem that it does not generalize to a tractable algorithm for
problems involving larger matrices.

* 8
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The underlying weakness of both approaches is the reliance on analytic properties of the
eigenvalue problem depending on the X-parameter in equation 6. In our approach we solve
the maximization problem of equation 3 without making direct use of equation 6. We can
sidestep the eigenvalue problem because it gives more information than we really need. The
key question is how big we can make Ixi before equation 6 has no solution for any X in U
It is possible to reformulate the problem in such a way that the the vector v, the phase of
and the matrix X do not play a direct role. In its new form the problem can be solved.

For the structure A1'1 the reformulated problem is stated in terms of a pair of 2x2 Hermitian
matrices Hl(r), H2(r) depending on a real parameter r. These two matrices are defined in
dyadic terms by:

H1 (r) = [m12] [mi l m1 - r [10] , H2(r) = [m 21 m22] - r [0 1] (7)

where mi, are twe components of the matrix M. The following lemma motivates the construc-
tion of H (r).

Lemma 1: There exist X e U, norzero v, and complex X such that iXI = r satisfying equation
6 if and only if there is a nonzero vector y £ C2 such that

y* H(r) y =0 and y*H 2 (r) y = 0. (8)

Proof of Lemma 1: First suppose a nonzero y satisfies equation 8. The components yl, Y2 of y
satisfy:

ImllY1 + m12Y212 = r ly,1 2  Im21Y1 + m 22Y2 12 = r iy 2 12  (9)

Taking square roots of both sides of both equations and setting X =r, we find that equation 9
is equivalent to the existence of real numbers 01, 02 such that

i[: 0°]I [y2] [Y]eI" in= x . (10)

The expression in equation 10 is the component form of equation 6.

Conversely, suppose equation 10 is satisfied. It is easy to see that the equations in 9 are
satisfied if r is set equal to IX12. Then equation 8 is also satisfied. Lemma 1 is proved.

In view of lemma 1 we may restate the maximization problem of equation 3 as follows: deter-
mine the largest real number r such that a nonzero vector y exists satisfying equation 8. This
reformulation leads immediately to

Question 1: Given a pair of Hzrmitian forms H1 and H2, when does there exist a nonzero vec-
tor y such that y- H' y = 0 and y* H2 y = 0 are satisfied simultaneously?

We will answer question 1 below in the statement of lemma 2. First we make two simple
observations.

9I
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Recall that the eigenvalues of a Hermitian matrix are real. We call a Hermitian matrix definite
if all its eigenvalues are nonzero and have the same sign (i.e. all are positive or all are nega-
tive).

Observation 1: If either form H 1 or H 2 is definite then no solution vector y exists.

Returning to the definitions of the matrices H'(r) in equation 7, however, we see that both
matrices are indefinite by construction. Each has one positive and one negative eigenvalue if
no row of M is zero. So observation 1 provides no useful information, but it does lead
directly to

Observation 2: If there is a real vector t = [tj, t2] such that H(t) = t1 H1 + t2 H2 is definite
then no solution vectcr y exists.

This second observation will be useful. In particular, if r is chosen sufficiently large, we see
that Hl(r) + H2(r) will be negative definite. Thus observation 2 can be used to place an upper
bound on the size of gt(M). Better yet, it leads to

Lemma 2: If H(t) is indefinite for all real vectors t, then there exists a nonzero vector y such
t-at

y*Hly=o and y*H 2 y=0

are satisfied simultaneously.

Proof of Lemma 2: It suffices to consider the one-parameter family of matrices

F = {t HI + H2 I t e R) . (11)

A Hermitian matrix has real eigenvalues; its determinant is the product of those eigenvalues.
It follows that a 2 x 2 Hermitian matrix is definite if and only if its determinant is positive.

Let us suppose that every matrix in F is indefinite. We conclude:

for all real t det(t HI + H2) < 0 (12)

There are now two cases.

Case 1: det(H1) = 0 -- then the function of t on the left-hand side of inequality 12 is an affine,
non-positive function that therefore must be constant (i.e. independent of t). These conditions
can arise for a pair of Hermitian, 2 x 2 matrices only if H1 is a scalar multiple of H2 , in
which case the conclusion of lemma 2 follows (take any nonzero y such that y* H2 y = 0.

Case 2: det(H') nonzero -- change the basis of C2 (if necessary) so that the matrices of H1

and H 2 are:

H1 =[ 1 H 2 H h .. h 2] (13)

for some real numbers h11, h22 and complex numbers h12 = h21.

10
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I In these coordinates the inequality 12 is equivalent to

3 (hij + h22) 2 - 4h12h21 < 0 (14)

Also, any vector y satisfying y* H' y = 0 has coordinates yj = ae'°', Y2 = aei°' for some real
numbers 01, 02 and a. We want to find a nonzero vector of this form that also satisfies
y* H2 y = 0. We might as well set a = 1.

The proof will be complete if we can find two real numbers 01 and 02 such that:

0 [e . h,, h121[eeil )]

[e-, Lh2 h 2 [ei2 J (15)

= hll + h22 + 2Re(ei(02 -0t)h12)

But equation (15) can be solved if and only if the inequality in 14 holds. Lemma 2 is proved.

I Remark 1: As a consequence of Lemma 2 and the preceding observations, we have proved the
following:

Let H', H2 be a pair of indefinite 2 x 2 Hermitian matrices. Then one of two exclusive alter-
natives holds:

Alternative 1: The matrix t1 H1 + t 2 H2 is definite for some pair of real numbers tj, t2.

Alternative 2: There is a nonzero vector y such that y*Hiy = 0 for i = 1,2.

Remark 2: The proof of Lemma 2 does not generalize to higher dimensions, nor does the con-
clusion if n is bigger than 3. For higher dimensions we need to use a more sophisticated
approach as described in Section 3.

Let us conclude the analysis of the A1'" mu.problem.

I For the matrices Hl(r) and H2(r) defined in equation 8, define the set F(r):

F(r) = {t H'(r) + H2(r) I t e R) (16)

We have already observed that H'(r) + H2(r) is definite for r sufficiently large. Define R0 to
be the infimum of the set of R such that for all r 2t R there exists a pair of real numbers t1, t2

such that t 1 1Hi(r) + t2 H2(r) is definite. R0 is finite and non-negative. By this construction,
any real combination of H (Ro) and H2(Ro) must be indefinite, so alternative 2 of remark 1
above must hold. Furthermore, for any r > Ro alternative 1 must hold (hence 2 cannot): it fol-lows that Ro is the solution to the optimization problem, hence equal to g(M) 2 (recall that inequation 10 we set r = I,12 and Ig(M) is the maximum IXI).

3 How do we compute Ro? First, we know from what we have already seen that there is a non-
zero vector y such that y H1(Ro) y = 0. Consequently, there is a unitary matrix Uo (not neces-
sarily in UA) such that for all t e R:
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U" (t H'(R0 ) + H2(Ro)) U h 1
21 + h2

21 t h12 + h222J (17)

Fortunately, we can say even more about the family F(Ro)

I Lemma 3: Let Hi(r), H2(r), F(r) and Ro be defined as above. For some real to the matrix

H = t°Hl(Ro) + H2(Ro) (18)

is semi-definite, with at least one zero eigenvalue.

I Proof of Lemma 3: For any e > 0 the family F(Ro + e) contains a definite matrix. There is no
difficulty in finding a compact set B of real numbers (B depends on HI(r) and H2(r) for r
between Ro and Ro + 1) such that for any e between 0 and 1 a number t' in B satisfies
tIH1(R° + -) + H2(Ro + 6) is definite.

Take a sequence {ei) decreasing to 0, and select an accompanying sequence { t C} in B such
that the corresponding matrix is definite. Let to be any limit point of the sequence ti', and
define H0 = to H'(R0 ) + H 2(Ro) as in equation 18. Every open set of 2 x 2 Hermitian
matrices containing H° also contains a definite matrix, yet HW is not definite. The eigenvalues
are continuous functions, so H° must be semi-definite; because it is not definite it has at least
one zero eigenvalue.

Lemma 3 is proved.

With lemma 3 in hand, let us reexamine the significance of equation 17. We now know that
when to of lemma 3 is substituted for t in 17 the determinant vanishes. In fact, the function

p(t) = det(t H1(Ro) + H2(R)) (19)

I must have a zero of second order at t = to. This means that the derivative polynomial d-(t)

is also zero at to. Summarizing this last discussion, we make

Observation 3: At r = Ro three things happen:

1) all forms in F(Ro) are indefinite
2) for some to the form to H1(R0 ) + H2(Ro) is semidefinite
3) when the form is semidefinite, the determinant vanishes at to to second order in t.

From these facts we see that R0 can be computed by the following algorithm.

Step 1: Computc the coefficients of the polynomial function pl(tr) of two variables defined by

pl(t,r) = det(t HI(r) + H2(r)) (20)

I Step 2: Compute the coefficients of

I
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p2(t,r) = aP -(tr) (21)
at

I Ste 3: Compute the coefficients of the polynomial function q(r) obtained by eliminating t
From p and P2-

Step 4: Find the largest positive real root of the polynomial q(r) (if no positive real root to
q(r) exists, take 0 for the answer).

Claim: The answer obtained in the fourth step is R0 , the square of the desired value A(M).
There are two cases to consider in verifying this last claim.

Case 1: M1 1 = 0 = M12 -- then the only nonzero entry in Hl(r) is -r in the 1,1 spot and
det(H (r)) is zero for all r. Consequently, the polynomial pl(:,r) is at most first-order in t so
P2(tr) is independent of t, and R. satisfies P2(t,R*) = 0 if and only if Im2212 = R.. Then the
2,2 entries of HI(R.) and H2 (R.) are both zero, hence alternative 2 of remark 2 is satisfied at r
= R.. If r > R., the 2,2 entry of H2 is negative and so, for large enough t, the determinant of
t H1 + H2 is positive. Thus alternative 1 holds for r > R., hence R. = R0 = t(M)2.

Case 2: ml or M12 nonzero-- then det(Hl(r)) is negative for any r > 0 so pl(tr) is quadratic
in t. If R, is any positive real root of the polynomial q(r) then pl(t,R.) is of the form

pl(t,R*) = -k 2 (t - t) 2

where the leading coefficient is negative because det(H1 (R*)) is negative. It follows that at R,
the determinant is non-positive for all t, hence t Hi(R,) + H2(R.) is indefinite for all t. Thus
R0 cannot be less that R,, the largest positive solution of q(r). On the other hand, R0 is also
be a root of q(r), hence R. = R0 = p.(M) 2 as claimed.

Remark 3: For this low dimensional example the answer can be computed without going
through the formal procedure just outlined. When the size of the problem gets bigger, how-
ever, the complexity of the computations becomes much greater and a more systematic
approach (e.g. elimination theory) is required. Though the details are different for the higher
dimensional problem discussed in the next section, the algorithm to compute gi(M) is basically
the same. A numerical example illustrates the four-step approach for the structure A'.

Numerical Example: Let M be the 2 x 2 matrix

M= .0 1 0i (22)

The two matrices HI(r) and H2(r) are:

Hl(r) = [ 10.0 100.00 H2(r) = [-0.1i (1.0-r23)

Step 1 for example: The polynomial pl(tr) is:

II 13
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1 pl(tr) = det(t Hi(r) + H2(r)) (24)

=-100.0rt 2 +((l -r) 2 + l) t-0.01 r

1 Step 2 for example: The polynomial P2(tr) is:

p2(tr) = --- (tr) (25)

= -200.0 r t + (r2 - 2.0 r + 2.0)

Step 3 for example: Setting equation 25 equal to zero and solving for t

t = (r2 - 2.0 r + 2.0) (26)
200.0 r

Obtain q(r) by substituting equation 26 into equation 24 and clearing fractions:

I q(r) = (r2 - 2.0 r + 2.0)2 - 4.0 r2  (27)

= (r2 + 2.0) (r2 - 4.Or - 2.0)

Step 4 for example: The largest root of q(r) is:

IR o = 2.0 + VI-h (28)

Finally

g.(M) = = 42.0+ 42.0 (29)

I
I
I
I
I
U
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3. The Theory for Diagonal Matrices

In this section we analyze the case of diagonal, unrepeated blocks.

Let M be a complex n x n matrix and denote by A1'' the set of n x n diagonal matrices:

51 0 0 00 r 0 .. 01
A. '- / o1  0 0 8n (3.1)

U where each 8j is a complex number. Here we do not allow repetition of any of the 8j symbols
on the diagonal.

Recall that UA is the set of n x n unitary matrices in Al' -1: i.e. for j = 1, ..,n 18jl =1.
For each X in U& we consider the eigenvalue problem for the product matrix XM. If the com-3 plex scalar X is an eigenvalue of XM there must be a nonzero v such that equation 3.2 holds:

XM v = X v. (3.2)

I As in section 2, we need to determine the largest I,1 that can arise for any X in Ua and
nonzero v satisfying equation 3.2.

I We now reformulate the problem in terms of n Hermitian n x n matrices H(r), • - •, -n(r)
depending on a real parameter r. These matrices are defined in dyadic terms by:

m. [m1 m1 2  man] 0 [10 01, (3.3)

!r

H r()- r - m -. I12 Mn]J . .O 10 .. 01,
Mi*0

Mni 0

Ln*j

L1

I Lemma 3.1 Let R0 be the largest real number for which there exists a nonzero vector y satis-
fying: 

y* HJ(r) y=0 j = 1,..., n. 
(3.4)

i
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I Then g(M) = -.

Proof of lemma 3.1: This simple computation is analogous to the one for the special case (see
Lemma 1 of Section 2).

Remark 3.1 The matrices Hj(r) defined here differ from those in Section 2 by a factor of 1
r

The idea is to normalize the Hi matrices so that the negative eigenvalue is -1 for any r. The
disadvantage of this change is that the HJ(r) matrices are no longer defined at r = 0. Because
we are primarily interested in those matrices for which t(M) is greater than zero we accept
this disadvantage for the sake of normalization.

The matrices Hj(r) are generically rank 2, but there are special conditions where the rank
drops to 0.

Definition 3.1 We will call the matrix M degenerate if some row is zero off the main diagonal
(i.e. for some i and all j not equal to i, mi=0).7

It is convenient to exclude the degenerate matrices from the general analysis below so we take
care of them now.

Lemma 3.2: Suppose the matrix M is degenerate, and that row i is zero away from the diago-
nal. Then gt(M) is the larger of the two numbers:

I 1) ImiI or
2) p.(Mi)

where M i is the (n - 1) x (n - 1) matrix obtained by deleting the id, row and column of M.

Proof of Lemma 3.2: Let M, v and X satisfy equation equation 3.2. Two possibilities arise as
* follows:

1) if the vector v has vi nonzero then II = Imi1I,

2) if the vector v has vi = 0 then the n-1 vector obtained from v by deleting vi satisfies 3.2 for
the matrix M i and the same X.

We know that p(M) is at least as large as Imuil because mj is an eigenvalue of M and
g(M) 2! (M). The only way that t(M) could be larger is if some v with vi = 0 satisfies equa-
tion 3.2 with some X of magnitude larger than Im.iI. In that case g(M) is equal to (Mi).

* Lemma 3.2 is proved.

If the matrix M obtained from M is still degenerate, lemma 3.2 can be applied repeatedly.
Repeated application will eventually lead to the computation of i for a non-degenerate matrix
or, if M is diagonal, eliminate the I computation completely (for diagonal M, gt(M) = 15(M)).

For the rest of this section we assume M is non-degenerate.

All the matrices Hi(r) are rank 2. Let us assume there is a nonzero vector y satisfying equa-
tion 3.4. Then there is a unitary transformation U such that the 1,I entries of the matrices
U* Hi(r) U are 0. In theorem 1 below we characterize the structure of the matrices U* H3(r) U.

Theorem I (Canonical Form): Suppose there is a nonzero vector y satisfying equation 3.4.
Then there is a unitary matrix U such that for each j the matrix H'(r) is in the following form:

I 16
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U* Hi(r) U = (&- _ ) cxixi - ]ri* (3.5)

I The n complex numbers ki, the n (n-1)-vectors ai and W in 3.5 are related to U and M by the
equations:

eiMU kU: ... .. .. ( .6

for some real diagonal n x n matrix G.

Proof of Theorem 1: Constructive -- by assumption there is a unit length vector k such that

*elO M [.1. [...1 (3.7)

3 The unit vector k can be expanded (nonuniquely) by n complex vectors ' of size (n-i) to a
n x n unitary matrix U:

I k'
S= ...... (3.8)

The vectors &J of size n-I are then given by the following equation:

e i M U [ (39)

kn 4kn

Equations 3.8 and 3.9 are the identities in equation 3.6. From here it is an easy task to verify
3.5: the jth row of the right hand side of 3.9 can be multiplied on the left by its conjugate
transpose to get

I kj a jaj"

which is one part of of 3.5 (the matrix ei° drops out). Similarly the jth row of the right hand
side of 3.8 can be left-multiplied by its conjugate transpose to get:

I
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Lk'v 1iiJ

When these last two matrices are subtracted the result is the right hand side of equation 3.5.

Theorem I is proved.

Remark 3.2 Except for special cases of M the vector k is unique up to phase. The vector k
can be identified with the vector y that was assumed to exist in the hypotheses. There was
some freedom in the selection of the parameters W -- all other solutions are obtained by multi-
plying U on the right by a general matrix of the form:

Tu = [ Tn-1] (3.10)

where Tn_1 is a unitary matrix of size n-1 x n-i. The aJ vectors are uniquely defined once
the other parameters are fixed.

The representation of the Hi(r) matrices given in Theorem 1 applies to any value r = 1 12 for
which the j-eigenvalue equation 3.2 has a solution. We are interested in characterizing
extremal solutions of 3.2. More precisely, we want to determine those values Rk that are local
maxima of those values of r for which equation 3.2 can be solved.

Before embarking on our extremal set analysis there are two topics to discuss. First, a sum-
mary of our goals for the rest of this section.

i We are headed for a theorem that characterizes the solution to the structured singular value
problem for a generic set of matrices. What we mean by generic is the second topic in this
digression, for now we concentrate on describing the general approach. The first step is to
identify a real-algebraic set S contained in Cn that contains the extremal point we seek. The
set S has a simple definition but a complicated structure. At a generic point S has a neighbor-
hood diffeomorphic to Rn, but there are exceptional points comprising the singular set of S
where this is not true. It is in the singular set of S that our answer lies.

Our final answer will be a set of polynomial equations that can be solved to determine every
point in the singular set of S. This set of polynomial equations is derived from a set of singu-
larity relations on the Jacobian of the defining equations of S that must hold at a point y0 if it
is in the exceptional set. The canonical form in Theorem 1 is used to construct the polynomial
equations for the singular set from the singularity relations. Elimination theory is used to
generate a polynomial in the single variable r. The largest real solution of this polynomial is
(generically) the square of t(M).

As mentioned at the beginning of this digression, the argument below will apply only to gen-
eric matrices M. For our work here, an argument will be said to apply generically if it is true
for an open (standard Euclidean norm topology), dense subset of the space of complex n x n
matrices. The precise conditions for which arguments apply will be stated in each case. The
results presented here were derived only recently and we did not have time to look for more
general proofs. Presumably, the special cases will be worked out later and a more comprehen-
sive treatment might be found.

I
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3 Returning to the extremal problem we introduce more notation.

Let Sr be the following set:

S,={yECn Iy*y= 1,y*Hj(r) y=0 j=l,-.,n) (3.11)

We want to find the largest value of r such that Sr is nonempty. Define the set S to be the
union of Sr over all r > 0. Suppose we have a curve y(r) mapping r in some interval [r0, r1]
into S such that y(r) C S,. We suppose that the mapping is differentiable at all points where it
is defined. What can be said about a value Rk of r beyond which this curve cannot be contin-
ued?

At all points r for which the curve y(r) is defined differentiably, the tangent vector dy must
dr

satisfy:

d y* Y+Y =0 HJ(r) y + y" jr)- + y . H )y = 0 (3.12)

dr dr dr dr dr
Sj1l, -",n.

Altogether, this set of equations imposes n+l real-linear conditions on the tangent vector dydr
that lives in a 2n-dimensional real vector space. The only way that there could be a problem
in finding a solution for a given value y(r) is if the equations are overdetermined and incon-3 sistent. Theorem 2 characterizes the local maximum points Rk.

Theorem 2:

1) Suppose y0 is a point in Sro. If the space of vectors w e Cn satisfying

I , dHJ (ro)w* Y0 + Yo* w = 0 w* HJ(ro) yo + y0 * HJ(r 0) w + Y d-r Y0  = 0 (3.13)

j=, n

is exactly (n-1)-dimensional then r0 is not a local maximum point.

2). The local maximum points Rk are contained in the singular set Ssing defined as follows:
Ssta g is the set of those values of r for which there exists a set of real numbers {t1  •tn

not all zero and yk , Sr such that:

n
I tj HJ(r) Yk = 0 and tj kj nonzero for some j. (3.14)

j=1

Proof of Theorem 2:

1) The existence of an (n-1)-dimensional space of solutions w of equation 3.13 at y0 implies a
local manifold structure for S (locally n-dimensional) near yo. A curve through Yo can be
found for values of r in the interval [r0, r0 + il for some small, positive 1 that stays in S. It
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follows that r0 is not a local maximum point.

2) The alternative to case I can arise only for values r = Rk for which there is a point Yo in
C' where the Jacobian of the mapping from C' to R"' 1 defining SR, is not full rank. Let us
suppose that there is a linear relation among the n+1 gradient functions. We use the canoni-
cal form coordinates provided by Theorem I for a general point in S. In these coordinates, the
point Yo and the general tangent vector w are:

I a, + ibl

1O 0= a2 +ib 2  (3.15)

L 0 Lan + ibj

The first relation w* y0 + Y0 w = 0 is, in this notation:

2a1 = (a1 - ib l) + (a1 + ib l ) = 0 (3.16)

I or, in other words, w1 is pure imaginary. This condition is the infinitesimal form of the
requirement that IJy(r)jj have a constant value: the curve stays in S2n-1 , the unit 2n-1 sphere in
Cn . The space S is contained in S2 1 x R where the last R factor parametrizes the r-values.

There are n more linear relations imposed on w: for each j we have

[(a, - ibl) (a2 - ib2 ) (an - ibn)] k(oj - + (3.17)

I a1 + ib" 1

a2 + ib 2  * dHJ(Rk) 0
[0 ... (j* - +[1 0 ... 0] U dr " "

Lan + ibn  0

The expression dr is computed in the original coordinates of equation 3.2. We have

chosen our coordinates so that the derivatives of U and U* do not appear: the matrices U are
held fixed (at their values for the canonical form at Rk) as the parameter r is varied continu-
ously about Rk. For now we treat the last summand on the left hand side of 3.17 as a general
(indeterminate) vector. To simplify notation define:

1

Zj=-[10 ... 0] d U* HJ(Rk) U 0 (3.18)zJ -l ' ] dr (3.18

I 0

Then (3.17) simplifies to:

I
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[k(a'* -* a2 +ib 2] [ZIl
2Re ..[[... (3.19)-_P(t*-p)- ,+ ibn z,,

If the rows of the complex coefficient matrix [' (a j* - J*)] are linearly independent over the
real numbers, then for any Z there exists a set of real numbers aj and b, solving equation 3.19.
Conversely, if the rows are linearly dependent over the reals then equaton 3.19 can be solved
only if Z lies in the kernel of the real row vector that annihilates the complex coefficient
matrix. The local manifold structure of S is guaranteed only at those points where the
columns are independent over the reals. This leads us to define:

Singularity Conditions: let r be in S and suppose yo is in Sr. Choose a transformation U so
that U- HJ(r) U is in the canonical form of Theorem 1. Let Z be the real vector in C' given
by 3.18. If r is in Ss fl then there must be some set {t1, " , tn) of nonzero real numbers

* such that:

[k[ (al* - P"1)l

[t 1 " . tn] .= 0 tjkj nonzero for some j. (3.20)
S(a* - 13 *)J

Equation 3.14 is an equivalent form of the singularity conditions in the original coordinates
(without the U* U terms, and conjugate-transposed).

I Theorem 2 is proved.

Remark 3.3: The conditions imposed in 3.16 are independent of those imposed in 3.19.
Geometrically this makes sense -- the relations in 3.19 are the infinitesimal form of the rela-
tions y* HJ(r) y = 0 that are invariant under multiplication by a complex scalar and so define a
relation on the projective space of lines in C'. Equation 3.16, on the other hand, is the
infinitesimal form of the normalization of vectors by their length. Any (nonzero) projective-
space solution of the equations y* Hi(r) y = 0 can be normalized to have unit length, so it isconsistent that the infinitesimal constraints should be independent.

Remark 3.4: As mentioned in Remark 3.2 the canonical form of Theorem 1 is not unique.
Because that form is used in the definition of Ssta g, we should verify that the set S"t g is well
defined, independent of choices. A different choice of form would result in multiplying the
complex coefficient matrix P (Ca* - WJ*) on the right by a unitary matrix Tn 1 as in equation
10 (actually, the phase of the matrix T, 1 may be shifted by a a uniform factor due to
nonuniqueness of the vector k). Transformations of this type cannot change the singularity
status of this matrix -- the singularity test depends on the existence of a real vector that
annihilates the complex coefficient matrix when applied on the left; while the nonuniqueness
is represented by multiplication with a nonsingular matrix on the right. Thus Sstag is welldefined, independent of choices made in the construction.

I The space Ssing has a direct analytic tie to the original It-problem. Consider a value r for

which Sr is nonempty. From the equations 3.6 it is easy to verify that:

I
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[ee IU=.. .. (3.21)
[ d _U o an- 

It is clear from this expression that 4r is a valid eigenvalue for the equation 3.2 because the
rank of d* [~eieM-

is less than n. For such a matrix there is always a vector w* such that

w* [ - IM =0. (3.22)

The vector w* is the left eigenvector for the problem 3.2. If r is in SS'g, however, then by
3.20 and 3.21 there is a set of real numbers {t, " , tn) such that tj k is nonzero for some

[j and "t " ,n Pn] I ] U = 0. (3.23)

Recall that k is the right eigenvector for M from Theorem 1. An alternate characterization of
Ising is as follows:

Alternate Singularity Characterization: The point r is in Ssing if there is a real n x n matrix )
such that the right eienvector k and left eigenvector w* for ei@M have components with con-
jugate phase, i.e. wj kj is real for j = 1, -- • , n.

So far we have worked at reformulating the problem but we have not made much progress
toward solving it. Before proceeding to the solution we pause to introduce a generic condi-
tion on the class of M.

II
h
I
I
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I GENERIC CONDITION: We assume that for all real r the rank of

[ei r Idj (3.24)

I for any real matrix E is never less than n-1.

Remark 3.5: Another way of stating the generic condition is to require that the matrix eieM is
free of repeated eigenvalues for any real 8. Experience with numerical aspects of the standard
eigenvalue problem suggests that this restriction on the problem might simplify analysis. The
possibility of nontrivial Jordan cells is eliminated if repeated eigenvalues are not allowed. The
non-repeated root condition holds for an open, dense subset of M and so is a generic condi-
tion. It will be assumed to hold for M in the analysis that follows.

It is worthwhile to see what the generic condition implies about the canonical form.

Observation 3.1 The generic condition is exactly the condition that the matrix:

eieM 1 n 0 cc* - *

[ 0 oe*  1*] U

(see equation 3.21) is rank, 1-I. Equivalently, the n x(n-1) matrix [oaj* - PJ*] is full rank. The
direction of the vector [tI k' , tn i' that appears in equation 3.23 as a left eigenvector
is therefore uniquely determined (up to a complex scalar factor) by the matrix [ctj -

Theorem 3: Let M be a generic matrix, and consider the polynomial function in the real vec-

tort={t1 , -- ,tn) and -
r

P(tl ' ... Y tn, det(t, H1 (r) + .. + tn II(r)) (3.25)
r

If r0 is in Ssing then the function p is a polynomial that is not identically zero. Furthermore,
there exists some point {t, , t } such that

I ~ ~p(t° , ..-- , t2, 1)=0,(32a

I ,=0 j~l ,n (3.26a)

- (to , "'" ,t4, r 0

Furthermore, from 3.26a and 3.26b there can be constructed a polynomial g(-) such that

every real number r0 in Ssing is a solution of r

I
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I( 0 (3.27)
ro

I Conversely, if ro is a real root of the polynomial g and if equations 3.26a and 3.26b are
satisfied nonvacuously by some real set of values (t° , • ,t:) then ro is in S.

Finally, if Ssing is nonempty, t(M) = -RJ where R,,. is the largest real nuwber in Ssing . If
Ssmg is empty, pi(M) = 0.

3 Proof of Theorem 3:

First we want to show that if r0 is in Ssi g there is a nonzero real vector to such that p and ()_

vanish at (to, I). By Theorem 1 there is a unitary U such that

ro

U" HJ(r o) U = ( [ J) a( jai _ J*) (3.28)

By Theorem 2 there is a real nonzero vector to such that

f[to  ... t l - -- 0. (3.29)
Ln (CO* n*')

Fixing the parameter ro , defin H(t) by

H(t) = t1 HI(ro) + • + t, Hn(ro) (3.30)

Then

I n1

U* H(t) U = n-I (3.31)
; .k (,J- f3) xT. (ai j- j*)

j=1 1=1 J1

I The 1,1 entry in 3.31 vanishes identically, the first row and column vanish at t = to. Expand-
ing the determinant about the first row it is clear that the polynomial

p(t, 1) = det(H(t)) = det(U* H(t) U) (3.32)
To

vanishes to first order at t = to (saying that H(t) vanishes to first order at to is another way of
saying that H(t0 ) H 0 and (t°) = 0). It is not difficult to show (using the generic assump-
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I tion on M and equation 3.31) that the unique (up to scale) to satisfies the polynomial equa-
tions 3.26a and 3.26b nonvacuously (see below). We have verified that each r0 in Sst g gives
rise to a nontrivial solution of equations 3.26a and 3.26b.

We now want to show the converse. Suppose r0 is a value of r such that the real vector to
satisfies equations 3.26a and 3.26b nonvacuously (nonvacuously means that at least one
nonzero to-monomial is multiplied by a nonzero coefficient of p).

Compute the n-1 x n-1 minor-polynomials of H(t) with respect to some row -- say the first
row. Let fi(t) denote the ith minor polynomial. Define the vector polynomial function F(t):

I fl(t)]
F(t) = . . " (3.33)

From det(H(t°)) = 0 it follows that

det(H(to))
I 0

H(to)F(t O) = .. . 0 (3.34)

I 0J

From the condition that the determinant of H(t) vanishes at to to first order, we know that

* [ F (to) +Fo F= .

I (to) H(t) Flt0 ) + F*(t°) % F(t0) + F*(tO) H(t0) -(to 0
aj aj t

I By equation 3.34 and its conjugate transpose, the first and third terms of the sum in 3.35 van-
ish. Evaluating the middle term, we find:

i F*(to) Hi F(t° ) = 0. (3.36)

which is exactly the form of the homogeneous system of equations defining S. The argumentis not complete, however, because all the first order minors could vanish at to -- then F(t°) is
the zero vector and equation 3.36 reduces to a vacuous assertion.

In case all the minors of H(t) vanish at to , take repeated partial derivatives of the function
F(t) with respect to an appropriate set of t, creating a sequence of vector polynomials
F (t) = F(t), Fl(t), F2(t), • - • that all vanish to first order at to until, finally, Fn(t) vanishes at
t but no longer to first order. This process works because of the assumption that to satisfiesI aFn 0

the equations 3.26a and 3.26b (it would not be true otherwise). Suppose -- (t) is nonzero.

3 Then
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0 = -H(t ° ) F,(t0) + H(to- )-n (to) (3.37)

aI t atj

so H(t)-.'-" (t) vanishes at to and a (to) is nonzero.I F.

Repeat the computations of equations 3.35 and 3.36 with in place of F.

I We conclude that r0 is in S.

To complete the proof of Theorem 3.3 we explain how the polynomial g is constructed. The
system of equations 3.26a and 3.26b is a set of n+1 simultaneous equations in the n+l unk-
nown variables t,, t 1 . In fact, these polynomials are not independent because of

the Euler identity:

n np(tO0,  '' tg)= Z tj 4 (to , . - tg, 1--

iaj1r0 (3.34)

Consequently, any solution of equations 3.26b will automatically satisfy equation 3.26a, so we
really have only n equations to solve. The polynomials are homogeneous in the t-variable,
however. For each solution (t,r) with t nonzero there is a 1-parameter family of solutions
(Xt, r) for all real X. The solution for each fixed r is a real projective variety in the t-space, so
the system of polynomials depends on n-1 independent affine parameters.

The general technique for solving this type of problem is elimination theory, as described in
[Van der Waerden]. The resulting polynomials can have very large degree, however, and it
might be better to take advantage of the structure of the polynomial system. The technique
used to test the theory on the 3 and 4 block cases is shown below as Constructive Algorithm
3.1.

All the constructions are now complete. Denote by V the the set of real solutions rj of the
resultant polynomial g(-). In the first part of the proof we showed that Ssing is a subset of

rV. In the second part we showed that V is a subset of S. The largest value Rm~, of S lies inSsing, therefore V is a finite set subset of S containing R.. x. For r > Rm,, we have Sr is

empty, but SR. is nonempty. From Lemma 3.1, if Ssing is nonempty then g(M) = N-m--. If S
is empty then Rm x is not defined and pi(M) = 0.

* Theorem 3 is proved.

Constructive Algorithm 3.1: In the proof of Theorem 3.3 we referred to a constructive algo-
rithm that takes advantage of the structure of the polynomial system. We illustrate the algo-
rithm here with the example from the 3-block case.

The most general form of the determinant polynomial in the 3-block scalar case is:

det(H(t)) = c210 t1t 2 + c 01 tt 3 + c120 tlt + (3.35)
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C111 t1 t2t3 + C102 t1t3 + C0 21 t t 3 + C0 12

The coefficients cijk are cubic polynomials in -. The three partial-derivative functions areIr
easily computed:

DH 22
-= 2c 2 10 t1 t2 + 2c2 0 1 t1 t3 + c 120 t2 + C111 t2t3 + C10 2t3 , (3.36a)

t2 = C2 10 t 2 + 2c1 2 0 t1 t2 + C111 t1 t3 + 2C02 1 t2 t3 + C012 t3 (3.36b)

I 2 2
ai= c201 t c + C111 t1t2 + 2c 102t1t3 + C021 t2 + 2c0 12t2t3  (3.36c)

Our goal is to determine a relation on the coefficients that holds whenever the system gives a
nontrivial point in Ss tag. The approach is to construct a 12 x 12 matrix out of the ci k suchthat the determinant vanishes whenever the r that they depend upon lies in Ssing.

The procedure for constructing the matrix is as follows. For each of the three derivative poly-
nomials, form the product with four separate monomials:

T1 = (tl, t1t2 , t1t3 , t2t3 } (3.37a)

T2 = {t1t2 , t3,, t2t3} (3.37b)

I T3 = {tIt 2 , tlt 3 , t2 t3 , t32) (3.37c)

The result is 12 polynomials that are generated by the 12 monomials:

B (t33t2, tlt 3, tI2t, t12t 2t3, 2M, t1t3, (3.38)

tlt 2 t3, t 1t2t 3 , t 2t3 , t 2t3 , t2 t3 , t2t3}

3 Form the coefficient matrix for the 12 polynomials. If there is a solution to the original three
equations for which the function H(t) does not vanish identically (at least 2 of the three values
tl,t 2,t3 must be nonzero) then the determinant of the 12 x 12 coefficient matrix will vanish.
Conversely, if the determinant vanishes then there is some solution of the original three equa-
tions with the property that at least 2 of the three values tl,t 2 ,t3 are nonzero.

To generate the polynomial g of Theorem 3.3, substitute the appropriate polynomial expres-
sion into the cijk functions that appear in the expression for the determinant of the coefficient
matrix.

3 We solved the four-block case by a similar, explicit scheme. The result was (for one example)
a 68 x 68 matrix that generically had rank 62 (we also tried a degenerate (definition 3.1)
example that generically had rank 49).

I Remark 3.7: When testing the algorithm we did not explicitly evaluate the polynomial g --
there was no need. Instead, we wrote a computer program that generated, for a given value of
r, the coefficient matrix corresponding to that value. The value of r was then allowed to vary,
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I by small increments, over a specified range of values. At each value of r an appropriate singu-
lar value of the coefficient matrix was computed using the LINPACK program dsvd. A plot
was then drawn for visual inspection. Some sample plots are shown in the accompanying
figures on the next page.

The plots on the next page show the results when the exact 4-block I computation algorithm
is run on an example. The example matrix is the sample test matrix M in the family of
matrices in [Robust Control of Multivariable and Large Scale Systems, Final technical Report
to AFOSR, Contract No. F49620-86-C-0001, March 23, 1988 by Andy Packard], page 39
with parameters defined on page 40. The interesting aspect of this example is that the upper
and lower bounds do not agree, so no technique for finding the exact value of gt was knownuntil the constructive algorithm 3.1 was developed.

Using the constructive algorithm in the 4-block case, we generated a 1-parameter family of
68 x 68 matrices that had entries linear in the cj variables. There were 6 relations in the gen-
erator set, so the rank of the matrix was generically 62. The horizontal axis of the plot is the
so-called mu-parameter. The largest mu-parameter value on the plot where the the matrix
looses rank is 41RmaJ = pt(M). Note that there appear to be only two nonzero mu-parameters
where the matrix looses rank -- this observation is significant because it means that the major-
ity of the 62 roots of the associated polynomial are probably complex, leaving what could be
a low order invariant factor that contains the sought point Ra (if more roots were real we
would expect to see many dips in the plot).

The second plot on the page shows the value of the singular value #63. Note that it is morethan 10 orders of magnitude smaller than the average value of singular value #62. This gapindicates a clear boundary where the matrix becomes rank-deficient. The third plot shows the

two singular values plotted to the (logarithmic) scale for direct comparison of magnitudes.

Finally, the last plot shows a blowup of the region of interest near the numerical zero of
singular value #62. For comparison, the lower bound program mup gave a lower bound of
0.8723 and an upper bound of 1.000 for g(M).

The constructive algorithm required roughly 6 SPARC second to evaluate the 68 singular
values at each mu-parameter value on the plot. For a typical plot consisting of 200 points, the
time required to evaluate a 4-block mu value exactly is just over 10 minutes. This is more
than 100 times slower than mup requires to provide the upper and lower bounds.

I
I
I
I
I
I
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1 4. Observations and Loose Ends

Theorem 3.3 in the previous section is an important breal. ,rough for the g-theory. It provides
a theoretical algorithm for computing gt(M), and it led to the functional algorithm we now
have on the computer that can solve the four-block diagonal problem.

I That theorem alone, however, does not provide a practical solution for the diagonal pt-problem
of arbitrary size. The computational method we have implemented does not generalize easily
to arbitrary dimensions. There are related theoretical developments still in progress, however,
that could improve this situation. This section is mainly concerned with other research in pro-
gress that, together with Theorem 3.3, could bring us to a more complete understanding of the
gI-problem.

I One point worth mentioning right away is we are not sure whether S'ing is a good set of
points to work with. We have worked only a few examples in the case of 2, 3 and 4 scalar
blocks, and little is known in general about the structure of S and how S' i"' sits inside it. It
seems likely that the theory would improve immensely if the global structure of some exam-
ples were worked out in detail. That is the long-term goal of the research described in thissection.

Observation 4.1: Much of the theory presented in Section 3 was developed in a different
framework by Andy Packard. In his Ph. D. thesis, he derived a set of polynomial conditions
that he used to define It-values [Packard 1]. There is a clear correspondence between his poly-
nomials and those in Theorem 3.2. The iterative lower-bound algorithm that Andy developed
[Packard 2] is based on a decomposition that makes use of a stationarity condition of an asso-
ciated gradient function.

Observation 4.2: There could be a better statement of the result in Theorem 3.3 more closely
related to both the computational methods and the geometric structure. For robust computation
we choose to compute the points of Sst g by means other than polynomial-root finding. As
mentioned in Remark 3.7 at the end of section 3, the earliest numerical test of the theory on 3
and 4 block examples did not rely on finding the roots of the polynomial g (we did not even
compute the polynomial g).

Observation 4.3: The reader should note that the methods used to obtain the polynomial con-
ditions in the n-block case in Section 3 are different from those used in the 2-block case
presented in Section 2. In Remark 2.1 an alternative criterion for pairs of indefinite 2 x 2
matrices was stated, and our initial approach to the general theory was based on a generaliza-
tion of that alternative condition. We state the (incorrect) generalization here.

Incorrect General Statement 4.1: Let Hi j - 1, - • • , n be a set of indefinite n x n Hermitian
forms. Define Z(HJ) to be the zero set of ij viewed as a quadratic form on cn:

Z(Hj) = {y E Cn t y Hj y=O (4.1)

Then one of two alternatives holds:

1) There exist real numbers t1, , tn such that I tj HJ is definite

2) The intersection of Z(Hj) over all j contains a nonzero point.
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I This statement is true for n=2 but not true for n2!4. The incorrectness of this general statement
for n 2t 4 is linked to the gap between gi(M) and inf({(D M D-1 ) I D c GLA) (the upper
bound found by Doyle in the original paper [Doyle] in which t was defined). The approach
in Section 2 might be extended to higher n as a way to relate the upper bound to gt. Finding
an exact bound on the size of the gap, even for the case n = 4, would be another significant
breakthrough.

I Loose End 4.1: So far we have not directly referred to invariants. In fact, much of this
approach was motivated by the idea that invariant theory could uncover some practical results
for the numerical solution of the problem. The function det(H(t)) is one type of invariant
function, there are other invariants as well.

Only recently have we started looking at other invariants associated with the t-problem. The
2-block case is trivial, the 3-block case is already hard but it appears tractable. Our status in
these two cases is presented below.

The two-block case: When n = 2 the polynomial det(H(t)) is:

det(H(t1, t2)) = c20 t? + c11 t1t2 + c02 t2 . (4.2)

N The condition that the gradient of det(H(t)) vanish at to is:

a(det(H(t0)) = 2c20 t0 + c 1 to = 0 , det(H(t°)) = c11 t0 + 2c02 to = 0 (4.3)
at1  1 +  2 at2  1 2

I These two equations can be satisfied for a nonzero to only if the discriminant function A
defined by

I A(C20 , C11 , C0 2 ) = 4 C20C0 2 - C1 = 0. (4.4)

i 1 g(±
Recall that the coefficients Cij are polynomial functions of I. The polynomial g( referredr r

to in Theorem 3.3 is (functionally equivalent to) the polynomial A when it is evaluated as a
function of r.

The three-block case: When n = 3 the polynomial det(H(t)) is:

det(H(t)) = C2 tlt1 + c201 t1t 3 + C120 t1t 2 + (4.5)

C111 tlt 2t3 + c102 t1t3 + c0 2
1 t22t3 + C012 t2t32

The problem is: find a set of polynomial functions of the coefficients ci11, analogous to the
discriminant function A for the two-block case, such that the vanishing of those functions is
equivalent to the condition that the gradient of g vanish at a point where at least 2 of the
components t° are nonzero (we may assume that two tj are nonzero because of the non-
vacuous assumption in Theorem 3.3).

U It is possible that the trace of H(t) and the sum of second principal minors will help solve the
problem (there is a discriminant for cubic polynomials in two variables that include these
quantities).
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I The technique developed by mathematicians to solve this type of problem is invariant theory,
the solution may be found (in principle) by analysis of the induced representations of the gen-
eral linear group GL(n) acting on degree-r homogeneous polynomials in t. All the basic
invariants can be determined by classical methods (see [Weyl]).

Though this theoretical answer is appealing, it is never clear in practice what invariants to
compute. The recipe indicated in [Weyll is to use the so-called symbolic method, a technique
that can be used to generate all the invariants of a given fixed degree. But then, he goes on to
say:

I "Great as this accomplishment is, one ought to point out, however, that the
method is far from reducing the construction of a finite integrity basis for form
invariants to the same for vector invariants. For the number of symbolic vector
arguments u1, '', uv we have to introduce [during the invariant construction
process] is dependent on the degree of J(u) [the invariant function], and we must
have an unlimited supply of such symbols at our disposal when we are to take
into account invariants J of all possible degrees."

[Weyl, p. 244]

In addition, there are general problems for which the full solution, even if computable, might
be impractical to implement in a computer program.

For the system of polynomials in Theorem 3.3, however, there is some hope for a satisfactory
solution in low dimensions. At least in the three and four block cases the invariant computa-
tions are of a small enough size that they can be performed by hand.

For example, one of the simplest low-degree invariants, the Hessian

[2det(H(t)) 1
XI() = detL ] (4.6)

(a covariant of weight 2, see [Weyl, p. 240]) provides a large set of nontrivial invariants to
work with. Note that

X(t) E fe ...... (cij) " t2 * (4.7)

3 is a polynomial in t homogeneous of degree n(n-2) in t with coefficient functions fi,.-.. .(cj
)

that are homogeneous of degree n in the cj (J is a multi-index, e.g. J = 2022 for the
coefficient c2022 when n = 4). The summands in equation 4.7 are assumed to have been sym-

n
metrized, with the summation running over all indices ill - ,in such that 1; in = n(n-2).

Our objective is to find relations among sets of invariants that hold whenever the value of r
they depend on lies in Ss t (see Theorem 3.2). (Note: an expression for the Hessian matrix
and its determinant has been computed directly from the expression in equation 3.31. There
might be symmetries but we have no definite results yet).

Now we already knew that there is a single polynomial g(-) that these coefficients had to
r

satisfy: it can be generated by Sylvester's determinants in elimination theory (see [Van der
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Waerden]). The problem with Sylvester determinants is the degree of the resultant polynomial
grows in size rapidly as n increases: the resultant degree is (generically) the product of the
degrees of the individual polynomials. For the system of polynomials in Theorem 3.3 there
are n equations each of degree n-1 -- the growth in degree is asymptotically n'.

One good reason for believing there should be invariant factors for Sylvester's determinant
polynomial is the existence of Constructive Algorithm 3.1. It is just a matter of identifying the
irreducible representation of the general linear group associated with that construction and wewill have an invariant relation to work with.

Very recently, we checked to see what the Hessian polynomials look like for the case of n=3.
In all, there are 10 polynomials of degree 3 in the 7 nonvanishing coefficients of the polyno-
mial det(H(t)) in equation 4.5. Two of the 10 quantities (generalized discriminants) are
presented in equation 4.10.

22

c111c2 10c20 1 - c120c20 1 - c102c 210  (4.1Oa)
I C2 10 (8 C20 1c02 1 - 4 C210C0 12 - 4 C120C 102 + 2 cll) (4.1Ob)

Equation 4.10a is the coefficient of t3 and 4.10b is the coefficient of t~t2 in the polynomial

X(t). There are two quantities similar to 4.10a and five others similar to 4.10b (the six rela-
tions of type 4.10b seem to be subdivided into two groups of three according to orientation).
There is one other quantity of a type not shown -- that one arises from the coefficient of t1 t2t3

in X(t).

We have not solved the problem, but we can state precisely what we hope for: THE BEST
POSSIBLE RESULT.

THE BEST POSSIBLE RESULT: For the three-block problem, the best possible result would
be to find a small set of low-degree invariants, similar in form to those in equation 4.10a and
4.10b, that generate the full ring of invariant functions. It would then follow that the Sylvester
determinant polynomial, being an invariant polynomial, would lie in the polynomial ideal gen-
erated by those polynomials. For the examples in equation 4.10 each coefficient c3 is a poly-

nomial of degree 3 in the parameter 1, that would therefore lead to generators of order no
r

greater than 9.

If such a result could be found then the Sylvester's determinant could be factored into primi-
tive invariants and then, to compute gi(M), one needs only find all the real roots of the factor
polynomials, call the largest one Rm., then pg(M) = Rmax.

We emphasize that we have not achieved the best possible result, nor do we feel totally
confident that we can solve it. On the other hand we have good reason to expect some pro-
gress. Some. hope seems justified because the problem originated from a system of quadratic
forms yJ* HI yJ = 0, and problems involving sets of quadratic forms have been solved in the
past [Bromwich]. We have only seen results for one parameter families, however (our prob-
lem is exactly the one Bromwich treats, but for n-parameter families and lower rank forms).

It is known that there is a finite set of polynomial generators and the classical theory provides
exhaustive methods for finding such a set. Even so, the problem of demonstrating an explicit
set of generators is usually not easy. Fortunately, there is another possibility:

AN EASIER RESULT OF EQUAL PRACTICAL VALUE: There is a deterministic process
that can be used to tell in finite time whether a given set of invariants is good enough to solve
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I the gI-problem. For our application it would be sufficient, and no loss in terms of practical
value, if we could find any set of low order invariants that factoize the Sylvester polynomial.
This restriction allows us to reformulate the problem in very explicit terms: using a specific
set of low order invariant polynomials, generate a complete linearly independent set (over the
real numbers) of invariant polynomials of degree less than or equal to the degree of the Syl-
vester polynomial. Determine whether the Sylvester polynomial lies in the span of this set.
(Besides those invariants already mentioned, a reasonable set of invariants to pick for this
application are those that can be generated by the symbolic method [Weyl] applied to the
form det(H(t)).) By restricting attention to this specific problem we avoid the general problem
that might be too hard to solve. This problem for the case n=3 is certainly not too hard -- we
have already demonstrated a constructive algorithm that provides a polynomial of degree 36

(and degree 272 for n--4) in -1 that is a sufficient condition that r be in Sling. If possible, wer

would like to find a minimal set of lower order polynomials (e.g. two of order 18 for n=3) to
do the same job.

It is worth noting that there are computer programs that generate and work with polynomial
invariants using symbolic manipulation. The formulas 4.10a and 4.10b were computed by
hand in about one-hour's time. That same computation could be performed by computer much
faster (and with fewer errors at intermediate stages). A computer could also handle larger
problems it could generate the Hessian invariants for the four, five, and six bock problems, for
example. Moreover, there are deterministic algorithms for taking the (moderately large) set of
invariants generated in this way and reduce it to a minimal set of generators. Finally, a com-
puter could be used to deteamine whether a set of low-order invariants generate the Sylvester
polynomial. Manual - ..' As should be adequate to perform these tasks for the three and four
block problems.

That summari-,es where we are so far on invariants. In the near future we hope to determine
at least in O.e case n=3 what the primitive factors of Sylvester's determinant polynomial are.
Surely this problem has been worked on before [we have some leads, but no references yet].
The vaiiety Z(det(HI) for n=3 is a singular cubic curve in p2, and for n=4 it is a singular
quartic surface in P . These two low-dimensional cases are reasonably well understood by
algebraic geometers [Hartshorne]. It looks like algebraic geometry and the invariant polynomi-

als could help us understand the low-dimensional problem and possibly lead us to a more
efficient computational algorithm. To meet the improved efficiency challenge for n=4, it has to
beat roughly 100 subroutine calls to the LINPACK routine dsvd with a 62 x 62 real matrix.
An important practical goal is to find the real solutions efficiently by minimizing the computa-
tional overhead of filtering out the imaginary ones. For the few examples we have tested there
seem to be relatively few real solutions, given the order of the underlying polynomials.

Last Minute Remarks: Given more time, we would have reworked the Canonical Form
Theorem 3.1 so that the matrix U would be uniquely determined. For points in Sling we now
know how to do that, the approach is roughly as follows:

At r _ Sling the Singularity Condition implies that a U can be chosen so that

rn 1 [ki (oaJ - pi)] (4.11)

(T,_ from equation 3.10) is a real vector for all j. Furthermore, assuming the matrix rank is
compatible, the complex coefficient matrix can be normalized so that the n-I x n-1 matrix:

Tn_ 1 [k2 (a 2 - p52) ... kn (o r - I3")] (4.12
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I is the identity matrix. The phase of the vector k can be normalized so that the nonzero entry
corresponding to the smallest index is positive. (Of course, there are exceptional cases where
a different parametrization of a similar type must be used). Given these extra conditions, the
canonical forms are reduced to their essential moduli.

Looking back at the 3-block problem, we see that this true canonical form leads to a manage-
able parametrization of the polynomial det(H(t)) in terms of aJ, W, andk. With all the free
parameters absorbed into U, the polynomial expression can be parametrized directly by I I
real parameters (the ciik then become functions of these 11 geometric parameters). The dimen-
sion count breaks down as follows: only two real parameters are left in the vectors
k' (a' - j); and the only other parameters needed are 9 more for the real part of the 2 x 2
matrix of cofactors in the lower right principal minor of the canonical form (the imaginary
part of the cofactor matrix does not contribute to the determinant when the kJ (CtJ - f9) vectors
are real). Of these 11, 3 disappear immediately because of the vanishing coefficients of the t3

terms. Thus the seven algebraic coefficients ciik are conveniently parametrized by the
geometric moduli fairly efficiently. The goal in this case would be to generate two more
independent relations that must hold for r c S 'g .

With the more efficient canonical form, perhaps the three-block problem can be solved by a
direct computational approach.

Final Note: The author noticed the following just before the final deadline:

Observation 4.4: Suppose there is a point to where det(H(t ) vanishes, nonvacuously, to first
order. Expand the function det(H(t)) in a polynomial about t

n
det(H(t)) = 1 qij(t) (t i - tP)(tj - tj0 ) . (4.13)

Ii=l

The polynomials qij(t) of degree n-2 are not necessarily homogeneous. This globally valid
expression for the polynomial in t has, in its expansion, expressions of varying total degree in
t, yet it is known a priori to be homogeneous of degree n. Consequently, there is a set of n-1
nontrivial conditions Rk, one for each positive integer k < n, defined on the coefficients of the
polynomials qij(t), that must hold if the homogeneous polynomial of degree n-k in t is to van-
ish.

I These conditions Rk are the key to THE EASIER RESULT OF EQUAL PRACTICAL

VALUE - they should lead to a primary decomposition of the polynomial ideal generated byd H(t))
the gradient polynomials

For k=l, the condition R1 will be generated by a set of invariants Ri1, each of which is the
determinant of an n x n square matrix Ai1 linear in the coefficients of the polynomials ij(t).
The condition R1 is satisfied only if all these determinants vanish.

For higher k the picture is not so clear, but it looks as if Rk is also generated by a set of
determinant functions: this time for matrices Ai of size equal to !k n
the dimension of the space of homogeneous polynomials of degree k in n variables. Each
matrix Ak will have entries that are polynomial functions (of degree 5 k?) in the coefficients
of the polynomials qij(t).

We believe can solve THE EASIER RESULT OF EQUAL PRACTICAL VALUE by the
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I following algorithm:

1) For k=1,2 map the coefficients of the Hessian matrix polynomials a2det(H) into theI tiatj
matrices Aik for the two values k=n-1 and n-2 (the Hessian polynomials are homogeneous of
degree n-2, so lower order expressions in the expansion 4.13 vanish identically).
2) Evaluate the determinants of Ai to obtain the invariant functions Olk(c) , where c is the
vector of coefficients cj (J a multiindex of total degree n) of the original function det(H(t)).

1 3) Consider the set of invariant polynomials Oi1(c). It looks like the degrees are n (when k=l)
and n(n+l) (when k=2), so the evaluation of these invariants is a reasonable numerical task
(compared with n'. The value r on which c depends is in S 9a (see Theorem 3.3) if and only
if all the invariants 0i(c) are zero.

We will investigate this idea further.

Notes for Section 4:

I For background in invariant theory the reader is referred to [Weyl]. An older, more elemen-
tary book on invariants of (families of) quadratic forms is [Bromwich]. In some respects the
approach we have taken here is an attempt to generalize the problem discussed in Bromwich's
book but we are (so far)only working with families of rank-2 forms. An introduction to the
modem theory of Algebraic Geometry is available in [Hartshorne]. A brief and interesting
elementary chapter on real algebraic geometry can be found in [Milnor]. Finally, for anyone
interested in working along these lines who is not familiar with the history of algebraic prob-
lems, we recommend [Dieudonne] as a general historical survey and the article by [Kleiman]
as a brief survey of the related subject of Schubert's calculus. We did not have a chance to
discuss here the Schubert-cycle interpretation of the Constructive Algorithm 3.1 -- that will
have wait until later.
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